Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 35(1): 36-55, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36473467

RESUMO

Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.


Assuntos
Neoplasias , Subpopulações de Linfócitos T , Humanos , Idoso , Subpopulações de Linfócitos T/metabolismo , Metabolismo Energético , Imunoterapia/métodos , Neoplasias/patologia , Microambiente Tumoral
2.
Science ; 377(6614): 1519-1529, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36173860

RESUMO

Gain-of-function mutations in isocitrate dehydrogenase (IDH) in human cancers result in the production of d-2-hydroxyglutarate (d-2HG), an oncometabolite that promotes tumorigenesis through epigenetic alterations. The cancer cell-intrinsic effects of d-2HG are well understood, but its tumor cell-nonautonomous roles remain poorly explored. We compared the oncometabolite d-2HG with its enantiomer, l-2HG, and found that tumor-derived d-2HG was taken up by CD8+ T cells and altered their metabolism and antitumor functions in an acute and reversible fashion. We identified the glycolytic enzyme lactate dehydrogenase (LDH) as a molecular target of d-2HG. d-2HG and inhibition of LDH drive a metabolic program and immune CD8+ T cell signature marked by decreased cytotoxicity and impaired interferon-γ signaling that was recapitulated in clinical samples from human patients with IDH1 mutant gliomas.


Assuntos
Linfócitos T CD8-Positivos , Carcinogênese , Glutaratos , Isocitrato Desidrogenase , Neoplasias , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Mutação com Ganho de Função , Glutaratos/metabolismo , Humanos , Interferon gama/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , L-Lactato Desidrogenase/antagonistas & inibidores , L-Lactato Desidrogenase/metabolismo , Camundongos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo
3.
Cancer Immunol Res ; 9(2): 184-199, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277233

RESUMO

Metabolic constraints in the tumor microenvironment constitute a barrier to effective antitumor immunity and similarities in the metabolic properties of T cells and cancer cells impede the specific therapeutic targeting of metabolism in either population. To identify distinct metabolic vulnerabilities of CD8+ T cells and cancer cells, we developed a high-throughput in vitro pharmacologic screening platform and used it to measure the cell type-specific sensitivities of activated CD8+ T cells and B16 melanoma cells to a wide array of metabolic perturbations during antigen-specific killing of cancer cells by CD8+ T cells. We illustrated the applicability of this screening platform by showing that CD8+ T cells were more sensitive to ferroptosis induction by inhibitors of glutathione peroxidase 4 (GPX4) than B16 and MC38 cancer cells. Overexpression of ferroptosis suppressor protein 1 (FSP1) or cytosolic GPX4 yielded ferroptosis-resistant CD8+ T cells without compromising their function, while genetic deletion of the ferroptosis sensitivity-promoting enzyme acyl-CoA synthetase long-chain family member 4 (ACSL4) protected CD8+ T cells from ferroptosis but impaired antitumor CD8+ T-cell responses. Our screen also revealed high T cell-specific vulnerabilities for compounds targeting NAD+ metabolism or autophagy and endoplasmic reticulum (ER) stress pathways. We focused the current screening effort on metabolic agents. However, this in vitro screening platform may also be valuable for rapid testing of other types of compounds to identify regulators of antitumor CD8+ T-cell function and potential therapeutic targets.


Assuntos
Antineoplásicos/farmacologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Células Tumorais Cultivadas/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Feminino , Ferroptose/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico
4.
Cell ; 183(7): 1848-1866.e26, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33301708

RESUMO

Obesity is a major cancer risk factor, but how differences in systemic metabolism change the tumor microenvironment (TME) and impact anti-tumor immunity is not understood. Here, we demonstrate that high-fat diet (HFD)-induced obesity impairs CD8+ T cell function in the murine TME, accelerating tumor growth. We generate a single-cell resolution atlas of cellular metabolism in the TME, detailing how it changes with diet-induced obesity. We find that tumor and CD8+ T cells display distinct metabolic adaptations to obesity. Tumor cells increase fat uptake with HFD, whereas tumor-infiltrating CD8+ T cells do not. These differential adaptations lead to altered fatty acid partitioning in HFD tumors, impairing CD8+ T cell infiltration and function. Blocking metabolic reprogramming by tumor cells in obese mice improves anti-tumor immunity. Analysis of human cancers reveals similar transcriptional changes in CD8+ T cell markers, suggesting interventions that exploit metabolism to improve cancer immunotherapy.


Assuntos
Imunidade , Neoplasias/imunologia , Neoplasias/metabolismo , Obesidade/metabolismo , Microambiente Tumoral , Adiposidade , Animais , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Células HEK293 , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Cinética , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , Análise de Componente Principal , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Proteômica
5.
Nat Commun ; 11(1): 6164, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268780

RESUMO

Familial hemiplegic migraine is an episodic neurological disorder characterized by transient sensory and motor symptoms and signs. Mutations of the ion pump α2-Na/K ATPase cause familial hemiplegic migraine, but the mechanisms by which α2-Na/K ATPase mutations lead to the migraine phenotype remain incompletely understood. Here, we show that mice in which α2-Na/K ATPase is conditionally deleted in astrocytes display episodic paralysis. Functional neuroimaging reveals that conditional α2-Na/K ATPase knockout triggers spontaneous cortical spreading depression events that are associated with EEG low voltage activity events, which correlate with transient motor impairment in these mice. Transcriptomic and metabolomic analyses show that α2-Na/K ATPase loss alters metabolic gene expression with consequent serine and glycine elevation in the brain. A serine- and glycine-free diet rescues the transient motor impairment in conditional α2-Na/K ATPase knockout mice. Together, our findings define a metabolic mechanism regulated by astrocytic α2-Na/K ATPase that triggers episodic motor paralysis in mice.


Assuntos
Astrócitos/metabolismo , Ataxia/genética , Metaboloma/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/genética , Transcriptoma , Animais , Astrócitos/patologia , Ataxia/metabolismo , Ataxia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Neuroimagem Funcional , Glicina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Enxaqueca com Aura/metabolismo , Enxaqueca com Aura/patologia , Teste de Desempenho do Rota-Rod , Serina/metabolismo , ATPase Trocadora de Sódio-Potássio/deficiência
6.
Cell Syst ; 8(5): 412-426.e7, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31078528

RESUMO

Tyrosine kinase inhibitors (TKIs) are widely used to treat solid tumors but can be cardiotoxic. The molecular basis for this toxicity and its relationship to therapeutic mechanisms remain unclear; we therefore undertook a systems-level analysis of human cardiomyocytes (CMs) exposed to four TKIs. CMs differentiated from human induced pluripotent stem cells (hiPSCs) were exposed to sunitinib, sorafenib, lapatinib, or erlotinib, and responses were assessed by functional assays, microscopy, RNA sequencing, and mass spectrometry (GEO: GSE114686; PRIDE: PXD012043). TKIs have diverse effects on hiPSC-CMs distinct from inhibition of tyrosine-kinase-mediated signal transduction; cardiac metabolism is particularly sensitive. Following sorafenib treatment, oxidative phosphorylation is downregulated, resulting in a profound defect in mitochondrial energetics. Cells adapt by upregulating aerobic glycolysis. Adaptation makes cells less acutely sensitive to sorafenib but may have long-term negative consequences. Thus, CMs exhibit adaptive responses to anti-cancer drugs conceptually similar to those previously shown in tumors to mediate drug resistance.


Assuntos
Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Aclimatação , Antineoplásicos/farmacologia , Cardiotoxicidade/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Cloridrato de Erlotinib/farmacologia , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Lapatinib/farmacologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Sunitinibe/farmacologia
7.
Science ; 363(6432): 1217-1222, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30872525

RESUMO

Oxygen sensing is central to metazoan biology and has implications for human disease. Mammalian cells express multiple oxygen-dependent enzymes called 2-oxoglutarate (OG)-dependent dioxygenases (2-OGDDs), but they vary in their oxygen affinities and hence their ability to sense oxygen. The 2-OGDD histone demethylases control histone methylation. Hypoxia increases histone methylation, but whether this reflects direct effects on histone demethylases or indirect effects caused by the hypoxic induction of the HIF (hypoxia-inducible factor) transcription factor or the 2-OG antagonist 2-hydroxyglutarate (2-HG) is unclear. Here, we report that hypoxia promotes histone methylation in a HIF- and 2-HG-independent manner. We found that the H3K27 histone demethylase KDM6A/UTX, but not its paralog KDM6B, is oxygen sensitive. KDM6A loss, like hypoxia, prevented H3K27 demethylation and blocked cellular differentiation. Restoring H3K27 methylation homeostasis in hypoxic cells reversed these effects. Thus, oxygen directly affects chromatin regulators to control cell fate.


Assuntos
Cromatina/metabolismo , Histona Desmetilases/metabolismo , Proteínas Nucleares/metabolismo , Oxigênio/metabolismo , Animais , Hipóxia Celular , Células HEK293 , Histona Desmetilases/genética , Histonas/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Células MCF-7 , Metilação , Camundongos , Proteínas Nucleares/genética
8.
Science ; 358(6365): 941-946, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29025995

RESUMO

Ammonia is a ubiquitous by-product of cellular metabolism; however, the biological consequences of ammonia production are not fully understood, especially in cancer. We found that ammonia is not merely a toxic waste product but is recycled into central amino acid metabolism to maximize nitrogen utilization. In our experiments, human breast cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH); secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment and was used directly to generate amino acids through GDH activity. These data show that ammonia is not only a secreted waste product but also a fundamental nitrogen source that can support tumor biomass.


Assuntos
Amônia/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Glutamato Desidrogenase/metabolismo , Aminação , Animais , Ácido Aspártico/metabolismo , Biocatálise , Proliferação de Células , Feminino , Glutamato Desidrogenase/genética , Humanos , Células MCF-7 , Camundongos , Prolina/metabolismo , RNA Interferente Pequeno/metabolismo , Microambiente Tumoral
9.
Cell ; 167(4): 985-1000.e21, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27881304

RESUMO

Mitochondrial sirtuins, SIRT3-5, are NAD+-dependent deacylases and ADP-ribosyltransferases that are critical for stress responses. However, a comprehensive understanding of sirtuin targets, regulation of sirtuin activity, and the relationships between sirtuins remains a key challenge in mitochondrial physiology. Here, we employ systematic interaction proteomics to elucidate the mitochondrial sirtuin protein interaction landscape. This work reveals sirtuin interactions with numerous functional modules within mitochondria, identifies candidate sirtuin substrates, and uncovers a fundamental role for sequestration of SIRT3 by ATP synthase in mitochondrial homeostasis. In healthy mitochondria, a pool of SIRT3 binds ATP synthase, but upon matrix pH reduction with concomitant loss of mitochondrial membrane potential, SIRT3 dissociates. This release correlates with rapid deacetylation of matrix proteins, and SIRT3 is required for recovery of membrane potential. In vitro reconstitution experiments, as well as analysis of CRISPR/Cas9-engineered cells, indicate that pH-dependent SIRT3 release requires H135 in the ATP5O subunit of ATP synthase. Our SIRT3-5 interaction network provides a framework for discovering novel biological functions regulated by mitochondrial sirtuins.


Assuntos
Mitocôndrias/metabolismo , Mapas de Interação de Proteínas , Sirtuína 3/metabolismo , Acetilação , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Proteínas de Membrana/metabolismo , Camundongos , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras , Sirtuínas/classificação , Sirtuínas/metabolismo
10.
Structure ; 21(9): 1479-81, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24010705

RESUMO

p300 and CBP are multi-domain histone acetyltransferases (HATs) that regulate gene expression and are mutated in human diseases including cancer. Delvecchio and colleagues report the structure of the p300 catalytic core, revealing the presence of a previously unknown RING domain that regulates the enzyme's activity.


Assuntos
Cromatina/metabolismo , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA